Molecular Dynamics Simulation of the Melting Process in Au15Ag40 Nanoalloys

Authors

Abstract:

In this study the operations of melting of Au15Ag40 nanoalloy have been studied using the molecular dynamic simulations through the Gupta multiparticle potential and the nonergodicity of simulations is eliminated by the multiple histogram method. The melting characteristics are determined by the analysis of variations in the potential energy. The calculations indicate that the melting of Au15Ag40 nanoalloy is started at 470 K and raised to peak at 505 K and at about 600 K the total of Au15Ag40 melted. We also obtained the Lindemann parameter and other properties at several temperatures during the simulation. The power spectrum values at zero frequency used to show the intensity of diffusive motions at the given temperature.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

molecular dynamics simulation of the melting process in au15ag40 nanoalloys

in this study the operations of melting of au15ag40 nanoalloy have been studied using the molecular dynamic simulations through the gupta multiparticle potential and the nonergodicity of simulations is eliminated by the multiple histogram method. the melting characteristics are determined by the analysis of variations in the potential energy. the calculations indicate that the melting of au15ag...

full text

Investigation of Melting by Molecular Dynamics Simulation

The melting of a 64 ion microcrystal of KCI was studied by means of a molecular dynamics computer simulation. We used a central pair interaction with an inverse power law repulsion. The thermodynamics, kinetic and structural properties such as melting temperature, latent heat, mean square displacement, diffusion constant, radial distribution function and bond angle distribution are calculated. ...

full text

Planar Molecular Dynamics Simulation of Au Clusters in Pushing Process

Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...

full text

Molecular Dynamics Simulation of Potassium Chloride Melting(.I. Microcrystal Simulation and Sample Size Effect)

The effect of sample size on the melting parameter of simulated potassium chloride microcrystal is investigated by molecular dynamics simulation. The size of microcrystal is varied from 8 to 4096 ions. The increase in melting temperature with sample size was found to be in good agreement with the theory.

full text

Molecular Dynamics Simulation of Potassium Chloride Melting (II. Constant Volume and Constant Pressure Simulation of Filled System)

We have used a simple ionic potential to simulate the melting of KCI pseudo-infinite crystal. Two MD simulations, one with constant Volume and the other with constant pressure condition are performed. These results are compared with the previous micro-sample simulation results. In the constant volume simulation the melting temperature increase substantially with increasing pressure. A method fo...

full text

planar molecular dynamics simulation of au clusters in pushing process

based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. in the present research, 2d molecular dynamics simulations have been used to investigate such behaviors. performing the planar simulations can provide a ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  359- 366

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023